| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- """MLP with convolutional gating (cgMLP) definition.
- References:
- https://openreview.net/forum?id=RA-zVvZLYIy
- https://arxiv.org/abs/2105.08050
- """
- import torch
- from funasr.modules.nets_utils import get_activation
- from funasr.modules.layer_norm import LayerNorm
- class ConvolutionalSpatialGatingUnit(torch.nn.Module):
- """Convolutional Spatial Gating Unit (CSGU)."""
- def __init__(
- self,
- size: int,
- kernel_size: int,
- dropout_rate: float,
- use_linear_after_conv: bool,
- gate_activation: str,
- ):
- super().__init__()
- n_channels = size // 2 # split input channels
- self.norm = LayerNorm(n_channels)
- self.conv = torch.nn.Conv1d(
- n_channels,
- n_channels,
- kernel_size,
- 1,
- (kernel_size - 1) // 2,
- groups=n_channels,
- )
- if use_linear_after_conv:
- self.linear = torch.nn.Linear(n_channels, n_channels)
- else:
- self.linear = None
- if gate_activation == "identity":
- self.act = torch.nn.Identity()
- else:
- self.act = get_activation(gate_activation)
- self.dropout = torch.nn.Dropout(dropout_rate)
- def espnet_initialization_fn(self):
- torch.nn.init.normal_(self.conv.weight, std=1e-6)
- torch.nn.init.ones_(self.conv.bias)
- if self.linear is not None:
- torch.nn.init.normal_(self.linear.weight, std=1e-6)
- torch.nn.init.ones_(self.linear.bias)
- def forward(self, x, gate_add=None):
- """Forward method
- Args:
- x (torch.Tensor): (N, T, D)
- gate_add (torch.Tensor): (N, T, D/2)
- Returns:
- out (torch.Tensor): (N, T, D/2)
- """
- x_r, x_g = x.chunk(2, dim=-1)
- x_g = self.norm(x_g) # (N, T, D/2)
- x_g = self.conv(x_g.transpose(1, 2)).transpose(1, 2) # (N, T, D/2)
- if self.linear is not None:
- x_g = self.linear(x_g)
- if gate_add is not None:
- x_g = x_g + gate_add
- x_g = self.act(x_g)
- out = x_r * x_g # (N, T, D/2)
- out = self.dropout(out)
- return out
- class ConvolutionalGatingMLP(torch.nn.Module):
- """Convolutional Gating MLP (cgMLP)."""
- def __init__(
- self,
- size: int,
- linear_units: int,
- kernel_size: int,
- dropout_rate: float,
- use_linear_after_conv: bool,
- gate_activation: str,
- ):
- super().__init__()
- self.channel_proj1 = torch.nn.Sequential(
- torch.nn.Linear(size, linear_units), torch.nn.GELU()
- )
- self.csgu = ConvolutionalSpatialGatingUnit(
- size=linear_units,
- kernel_size=kernel_size,
- dropout_rate=dropout_rate,
- use_linear_after_conv=use_linear_after_conv,
- gate_activation=gate_activation,
- )
- self.channel_proj2 = torch.nn.Linear(linear_units // 2, size)
- def forward(self, x, mask):
- if isinstance(x, tuple):
- xs_pad, pos_emb = x
- else:
- xs_pad, pos_emb = x, None
- xs_pad = self.channel_proj1(xs_pad) # size -> linear_units
- xs_pad = self.csgu(xs_pad) # linear_units -> linear_units/2
- xs_pad = self.channel_proj2(xs_pad) # linear_units/2 -> size
- if pos_emb is not None:
- out = (xs_pad, pos_emb)
- else:
- out = xs_pad
- return out
|