| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513 |
- #!/usr/bin/env python3
- # -*- encoding: utf-8 -*-
- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
- # MIT License (https://opensource.org/licenses/MIT)
- import torch
- import logging
- import numpy as np
- from funasr.register import tables
- from funasr.train_utils.device_funcs import to_device
- from funasr.models.transformer.utils.nets_utils import make_pad_mask
- @tables.register("predictor_classes", "CifPredictor")
- class CifPredictor(torch.nn.Module):
- def __init__(self, idim, l_order, r_order, threshold=1.0, dropout=0.1, smooth_factor=1.0, noise_threshold=0, tail_threshold=0.45):
- super().__init__()
- self.pad = torch.nn.ConstantPad1d((l_order, r_order), 0)
- self.cif_conv1d = torch.nn.Conv1d(idim, idim, l_order + r_order + 1, groups=idim)
- self.cif_output = torch.nn.Linear(idim, 1)
- self.dropout = torch.nn.Dropout(p=dropout)
- self.threshold = threshold
- self.smooth_factor = smooth_factor
- self.noise_threshold = noise_threshold
- self.tail_threshold = tail_threshold
- def forward(self, hidden, target_label=None, mask=None, ignore_id=-1, mask_chunk_predictor=None,
- target_label_length=None):
- h = hidden
- context = h.transpose(1, 2)
- queries = self.pad(context)
- memory = self.cif_conv1d(queries)
- output = memory + context
- output = self.dropout(output)
- output = output.transpose(1, 2)
- output = torch.relu(output)
- output = self.cif_output(output)
- alphas = torch.sigmoid(output)
- alphas = torch.nn.functional.relu(alphas * self.smooth_factor - self.noise_threshold)
- if mask is not None:
- mask = mask.transpose(-1, -2).float()
- alphas = alphas * mask
- if mask_chunk_predictor is not None:
- alphas = alphas * mask_chunk_predictor
- alphas = alphas.squeeze(-1)
- mask = mask.squeeze(-1)
- if target_label_length is not None:
- target_length = target_label_length
- elif target_label is not None:
- target_length = (target_label != ignore_id).float().sum(-1)
- else:
- target_length = None
- token_num = alphas.sum(-1)
- if target_length is not None:
- alphas *= (target_length / token_num)[:, None].repeat(1, alphas.size(1))
- elif self.tail_threshold > 0.0:
- hidden, alphas, token_num = self.tail_process_fn(hidden, alphas, token_num, mask=mask)
-
- acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold)
-
- if target_length is None and self.tail_threshold > 0.0:
- token_num_int = torch.max(token_num).type(torch.int32).item()
- acoustic_embeds = acoustic_embeds[:, :token_num_int, :]
-
- return acoustic_embeds, token_num, alphas, cif_peak
- def tail_process_fn(self, hidden, alphas, token_num=None, mask=None):
- b, t, d = hidden.size()
- tail_threshold = self.tail_threshold
- if mask is not None:
- zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device)
- ones_t = torch.ones_like(zeros_t)
- mask_1 = torch.cat([mask, zeros_t], dim=1)
- mask_2 = torch.cat([ones_t, mask], dim=1)
- mask = mask_2 - mask_1
- tail_threshold = mask * tail_threshold
- alphas = torch.cat([alphas, zeros_t], dim=1)
- alphas = torch.add(alphas, tail_threshold)
- else:
- tail_threshold = torch.tensor([tail_threshold], dtype=alphas.dtype).to(alphas.device)
- tail_threshold = torch.reshape(tail_threshold, (1, 1))
- alphas = torch.cat([alphas, tail_threshold], dim=1)
- zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device)
- hidden = torch.cat([hidden, zeros], dim=1)
- token_num = alphas.sum(dim=-1)
- token_num_floor = torch.floor(token_num)
- return hidden, alphas, token_num_floor
- def gen_frame_alignments(self,
- alphas: torch.Tensor = None,
- encoder_sequence_length: torch.Tensor = None):
- batch_size, maximum_length = alphas.size()
- int_type = torch.int32
- is_training = self.training
- if is_training:
- token_num = torch.round(torch.sum(alphas, dim=1)).type(int_type)
- else:
- token_num = torch.floor(torch.sum(alphas, dim=1)).type(int_type)
- max_token_num = torch.max(token_num).item()
- alphas_cumsum = torch.cumsum(alphas, dim=1)
- alphas_cumsum = torch.floor(alphas_cumsum).type(int_type)
- alphas_cumsum = alphas_cumsum[:, None, :].repeat(1, max_token_num, 1)
- index = torch.ones([batch_size, max_token_num], dtype=int_type)
- index = torch.cumsum(index, dim=1)
- index = index[:, :, None].repeat(1, 1, maximum_length).to(alphas_cumsum.device)
- index_div = torch.floor(torch.true_divide(alphas_cumsum, index)).type(int_type)
- index_div_bool_zeros = index_div.eq(0)
- index_div_bool_zeros_count = torch.sum(index_div_bool_zeros, dim=-1) + 1
- index_div_bool_zeros_count = torch.clamp(index_div_bool_zeros_count, 0, encoder_sequence_length.max())
- token_num_mask = (~make_pad_mask(token_num, maxlen=max_token_num)).to(token_num.device)
- index_div_bool_zeros_count *= token_num_mask
- index_div_bool_zeros_count_tile = index_div_bool_zeros_count[:, :, None].repeat(1, 1, maximum_length)
- ones = torch.ones_like(index_div_bool_zeros_count_tile)
- zeros = torch.zeros_like(index_div_bool_zeros_count_tile)
- ones = torch.cumsum(ones, dim=2)
- cond = index_div_bool_zeros_count_tile == ones
- index_div_bool_zeros_count_tile = torch.where(cond, zeros, ones)
- index_div_bool_zeros_count_tile_bool = index_div_bool_zeros_count_tile.type(torch.bool)
- index_div_bool_zeros_count_tile = 1 - index_div_bool_zeros_count_tile_bool.type(int_type)
- index_div_bool_zeros_count_tile_out = torch.sum(index_div_bool_zeros_count_tile, dim=1)
- index_div_bool_zeros_count_tile_out = index_div_bool_zeros_count_tile_out.type(int_type)
- predictor_mask = (~make_pad_mask(encoder_sequence_length, maxlen=encoder_sequence_length.max())).type(
- int_type).to(encoder_sequence_length.device)
- index_div_bool_zeros_count_tile_out = index_div_bool_zeros_count_tile_out * predictor_mask
- predictor_alignments = index_div_bool_zeros_count_tile_out
- predictor_alignments_length = predictor_alignments.sum(-1).type(encoder_sequence_length.dtype)
- return predictor_alignments.detach(), predictor_alignments_length.detach()
- @tables.register("predictor_classes", "CifPredictorV2")
- class CifPredictorV2(torch.nn.Module):
- def __init__(self,
- idim,
- l_order,
- r_order,
- threshold=1.0,
- dropout=0.1,
- smooth_factor=1.0,
- noise_threshold=0,
- tail_threshold=0.0,
- tf2torch_tensor_name_prefix_torch="predictor",
- tf2torch_tensor_name_prefix_tf="seq2seq/cif",
- tail_mask=True,
- ):
- super(CifPredictorV2, self).__init__()
- self.pad = torch.nn.ConstantPad1d((l_order, r_order), 0)
- self.cif_conv1d = torch.nn.Conv1d(idim, idim, l_order + r_order + 1)
- self.cif_output = torch.nn.Linear(idim, 1)
- self.dropout = torch.nn.Dropout(p=dropout)
- self.threshold = threshold
- self.smooth_factor = smooth_factor
- self.noise_threshold = noise_threshold
- self.tail_threshold = tail_threshold
- self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
- self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
- self.tail_mask = tail_mask
- def forward(self, hidden, target_label=None, mask=None, ignore_id=-1, mask_chunk_predictor=None,
- target_label_length=None):
- h = hidden
- context = h.transpose(1, 2)
- queries = self.pad(context)
- output = torch.relu(self.cif_conv1d(queries))
- output = output.transpose(1, 2)
- output = self.cif_output(output)
- alphas = torch.sigmoid(output)
- alphas = torch.nn.functional.relu(alphas * self.smooth_factor - self.noise_threshold)
- if mask is not None:
- mask = mask.transpose(-1, -2).float()
- alphas = alphas * mask
- if mask_chunk_predictor is not None:
- alphas = alphas * mask_chunk_predictor
- alphas = alphas.squeeze(-1)
- mask = mask.squeeze(-1)
- if target_label_length is not None:
- target_length = target_label_length.squeeze(-1)
- elif target_label is not None:
- target_length = (target_label != ignore_id).float().sum(-1)
- else:
- target_length = None
- token_num = alphas.sum(-1)
- if target_length is not None:
- alphas *= (target_length / token_num)[:, None].repeat(1, alphas.size(1))
- elif self.tail_threshold > 0.0:
- if self.tail_mask:
- hidden, alphas, token_num = self.tail_process_fn(hidden, alphas, token_num, mask=mask)
- else:
- hidden, alphas, token_num = self.tail_process_fn(hidden, alphas, token_num, mask=None)
- acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold)
- if target_length is None and self.tail_threshold > 0.0:
- token_num_int = torch.max(token_num).type(torch.int32).item()
- acoustic_embeds = acoustic_embeds[:, :token_num_int, :]
- return acoustic_embeds, token_num, alphas, cif_peak
- def forward_chunk(self, hidden, cache=None, **kwargs):
- is_final = kwargs.get("is_final", False)
- batch_size, len_time, hidden_size = hidden.shape
- h = hidden
- context = h.transpose(1, 2)
- queries = self.pad(context)
- output = torch.relu(self.cif_conv1d(queries))
- output = output.transpose(1, 2)
- output = self.cif_output(output)
- alphas = torch.sigmoid(output)
- alphas = torch.nn.functional.relu(alphas * self.smooth_factor - self.noise_threshold)
- alphas = alphas.squeeze(-1)
- token_length = []
- list_fires = []
- list_frames = []
- cache_alphas = []
- cache_hiddens = []
- if cache is not None and "chunk_size" in cache:
- alphas[:, :cache["chunk_size"][0]] = 0.0
- if not is_final:
- alphas[:, sum(cache["chunk_size"][:2]):] = 0.0
- if cache is not None and "cif_alphas" in cache and "cif_hidden" in cache:
- cache["cif_hidden"] = to_device(cache["cif_hidden"], device=hidden.device)
- cache["cif_alphas"] = to_device(cache["cif_alphas"], device=alphas.device)
- hidden = torch.cat((cache["cif_hidden"], hidden), dim=1)
- alphas = torch.cat((cache["cif_alphas"], alphas), dim=1)
- if cache is not None and is_final:
- tail_hidden = torch.zeros((batch_size, 1, hidden_size), device=hidden.device)
- tail_alphas = torch.tensor([[self.tail_threshold]], device=alphas.device)
- tail_alphas = torch.tile(tail_alphas, (batch_size, 1))
- hidden = torch.cat((hidden, tail_hidden), dim=1)
- alphas = torch.cat((alphas, tail_alphas), dim=1)
- len_time = alphas.shape[1]
- for b in range(batch_size):
- integrate = 0.0
- frames = torch.zeros((hidden_size), device=hidden.device)
- list_frame = []
- list_fire = []
- for t in range(len_time):
- alpha = alphas[b][t]
- if alpha + integrate < self.threshold:
- integrate += alpha
- list_fire.append(integrate)
- frames += alpha * hidden[b][t]
- else:
- frames += (self.threshold - integrate) * hidden[b][t]
- list_frame.append(frames)
- integrate += alpha
- list_fire.append(integrate)
- integrate -= self.threshold
- frames = integrate * hidden[b][t]
- cache_alphas.append(integrate)
- if integrate > 0.0:
- cache_hiddens.append(frames / integrate)
- else:
- cache_hiddens.append(frames)
- token_length.append(torch.tensor(len(list_frame), device=alphas.device))
- list_fires.append(list_fire)
- list_frames.append(list_frame)
- cache["cif_alphas"] = torch.stack(cache_alphas, axis=0)
- cache["cif_alphas"] = torch.unsqueeze(cache["cif_alphas"], axis=0)
- cache["cif_hidden"] = torch.stack(cache_hiddens, axis=0)
- cache["cif_hidden"] = torch.unsqueeze(cache["cif_hidden"], axis=0)
- max_token_len = max(token_length)
- if max_token_len == 0:
- return hidden, torch.stack(token_length, 0), None, None
- list_ls = []
- for b in range(batch_size):
- pad_frames = torch.zeros((max_token_len - token_length[b], hidden_size), device=alphas.device)
- if token_length[b] == 0:
- list_ls.append(pad_frames)
- else:
- list_frames[b] = torch.stack(list_frames[b])
- list_ls.append(torch.cat((list_frames[b], pad_frames), dim=0))
- cache["cif_alphas"] = torch.stack(cache_alphas, axis=0)
- cache["cif_alphas"] = torch.unsqueeze(cache["cif_alphas"], axis=0)
- cache["cif_hidden"] = torch.stack(cache_hiddens, axis=0)
- cache["cif_hidden"] = torch.unsqueeze(cache["cif_hidden"], axis=0)
- return torch.stack(list_ls, 0), torch.stack(token_length, 0), None, None
- def tail_process_fn(self, hidden, alphas, token_num=None, mask=None):
- b, t, d = hidden.size()
- tail_threshold = self.tail_threshold
- if mask is not None:
- zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device)
- ones_t = torch.ones_like(zeros_t)
- mask_1 = torch.cat([mask, zeros_t], dim=1)
- mask_2 = torch.cat([ones_t, mask], dim=1)
- mask = mask_2 - mask_1
- tail_threshold = mask * tail_threshold
- alphas = torch.cat([alphas, zeros_t], dim=1)
- alphas = torch.add(alphas, tail_threshold)
- else:
- tail_threshold = torch.tensor([tail_threshold], dtype=alphas.dtype).to(alphas.device)
- tail_threshold = torch.reshape(tail_threshold, (1, 1))
- if b > 1:
- alphas = torch.cat([alphas, tail_threshold.repeat(b, 1)], dim=1)
- else:
- alphas = torch.cat([alphas, tail_threshold], dim=1)
- zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device)
- hidden = torch.cat([hidden, zeros], dim=1)
- token_num = alphas.sum(dim=-1)
- token_num_floor = torch.floor(token_num)
- return hidden, alphas, token_num_floor
- def gen_frame_alignments(self,
- alphas: torch.Tensor = None,
- encoder_sequence_length: torch.Tensor = None):
- batch_size, maximum_length = alphas.size()
- int_type = torch.int32
- is_training = self.training
- if is_training:
- token_num = torch.round(torch.sum(alphas, dim=1)).type(int_type)
- else:
- token_num = torch.floor(torch.sum(alphas, dim=1)).type(int_type)
- max_token_num = torch.max(token_num).item()
- alphas_cumsum = torch.cumsum(alphas, dim=1)
- alphas_cumsum = torch.floor(alphas_cumsum).type(int_type)
- alphas_cumsum = alphas_cumsum[:, None, :].repeat(1, max_token_num, 1)
- index = torch.ones([batch_size, max_token_num], dtype=int_type)
- index = torch.cumsum(index, dim=1)
- index = index[:, :, None].repeat(1, 1, maximum_length).to(alphas_cumsum.device)
- index_div = torch.floor(torch.true_divide(alphas_cumsum, index)).type(int_type)
- index_div_bool_zeros = index_div.eq(0)
- index_div_bool_zeros_count = torch.sum(index_div_bool_zeros, dim=-1) + 1
- index_div_bool_zeros_count = torch.clamp(index_div_bool_zeros_count, 0, encoder_sequence_length.max())
- token_num_mask = (~make_pad_mask(token_num, maxlen=max_token_num)).to(token_num.device)
- index_div_bool_zeros_count *= token_num_mask
- index_div_bool_zeros_count_tile = index_div_bool_zeros_count[:, :, None].repeat(1, 1, maximum_length)
- ones = torch.ones_like(index_div_bool_zeros_count_tile)
- zeros = torch.zeros_like(index_div_bool_zeros_count_tile)
- ones = torch.cumsum(ones, dim=2)
- cond = index_div_bool_zeros_count_tile == ones
- index_div_bool_zeros_count_tile = torch.where(cond, zeros, ones)
- index_div_bool_zeros_count_tile_bool = index_div_bool_zeros_count_tile.type(torch.bool)
- index_div_bool_zeros_count_tile = 1 - index_div_bool_zeros_count_tile_bool.type(int_type)
- index_div_bool_zeros_count_tile_out = torch.sum(index_div_bool_zeros_count_tile, dim=1)
- index_div_bool_zeros_count_tile_out = index_div_bool_zeros_count_tile_out.type(int_type)
- predictor_mask = (~make_pad_mask(encoder_sequence_length, maxlen=encoder_sequence_length.max())).type(
- int_type).to(encoder_sequence_length.device)
- index_div_bool_zeros_count_tile_out = index_div_bool_zeros_count_tile_out * predictor_mask
- predictor_alignments = index_div_bool_zeros_count_tile_out
- predictor_alignments_length = predictor_alignments.sum(-1).type(encoder_sequence_length.dtype)
- return predictor_alignments.detach(), predictor_alignments_length.detach()
- def gen_tf2torch_map_dict(self):
-
- tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
- tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
- map_dict_local = {
- ## predictor
- "{}.cif_conv1d.weight".format(tensor_name_prefix_torch):
- {"name": "{}/conv1d/kernel".format(tensor_name_prefix_tf),
- "squeeze": None,
- "transpose": (2, 1, 0),
- }, # (256,256,3),(3,256,256)
- "{}.cif_conv1d.bias".format(tensor_name_prefix_torch):
- {"name": "{}/conv1d/bias".format(tensor_name_prefix_tf),
- "squeeze": None,
- "transpose": None,
- }, # (256,),(256,)
- "{}.cif_output.weight".format(tensor_name_prefix_torch):
- {"name": "{}/conv1d_1/kernel".format(tensor_name_prefix_tf),
- "squeeze": 0,
- "transpose": (1, 0),
- }, # (1,256),(1,256,1)
- "{}.cif_output.bias".format(tensor_name_prefix_torch):
- {"name": "{}/conv1d_1/bias".format(tensor_name_prefix_tf),
- "squeeze": None,
- "transpose": None,
- }, # (1,),(1,)
- }
- return map_dict_local
- def convert_tf2torch(self,
- var_dict_tf,
- var_dict_torch,
- ):
- map_dict = self.gen_tf2torch_map_dict()
- var_dict_torch_update = dict()
- for name in sorted(var_dict_torch.keys(), reverse=False):
- names = name.split('.')
- if names[0] == self.tf2torch_tensor_name_prefix_torch:
- name_tf = map_dict[name]["name"]
- data_tf = var_dict_tf[name_tf]
- if map_dict[name]["squeeze"] is not None:
- data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"])
- if map_dict[name]["transpose"] is not None:
- data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
- data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
- assert var_dict_torch[name].size() == data_tf.size(), "{}, {}, {} != {}".format(name, name_tf,
- var_dict_torch[
- name].size(),
- data_tf.size())
- var_dict_torch_update[name] = data_tf
- logging.info(
- "torch tensor: {}, {}, loading from tf tensor: {}, {}".format(name, data_tf.size(), name_tf,
- var_dict_tf[name_tf].shape))
-
- return var_dict_torch_update
- class mae_loss(torch.nn.Module):
- def __init__(self, normalize_length=False):
- super(mae_loss, self).__init__()
- self.normalize_length = normalize_length
- self.criterion = torch.nn.L1Loss(reduction='sum')
- def forward(self, token_length, pre_token_length):
- loss_token_normalizer = token_length.size(0)
- if self.normalize_length:
- loss_token_normalizer = token_length.sum().type(torch.float32)
- loss = self.criterion(token_length, pre_token_length)
- loss = loss / loss_token_normalizer
- return loss
- def cif(hidden, alphas, threshold):
- batch_size, len_time, hidden_size = hidden.size()
- # loop varss
- integrate = torch.zeros([batch_size], device=hidden.device)
- frame = torch.zeros([batch_size, hidden_size], device=hidden.device)
- # intermediate vars along time
- list_fires = []
- list_frames = []
- for t in range(len_time):
- alpha = alphas[:, t]
- distribution_completion = torch.ones([batch_size], device=hidden.device) - integrate
- integrate += alpha
- list_fires.append(integrate)
- fire_place = integrate >= threshold
- integrate = torch.where(fire_place,
- integrate - torch.ones([batch_size], device=hidden.device),
- integrate)
- cur = torch.where(fire_place,
- distribution_completion,
- alpha)
- remainds = alpha - cur
- frame += cur[:, None] * hidden[:, t, :]
- list_frames.append(frame)
- frame = torch.where(fire_place[:, None].repeat(1, hidden_size),
- remainds[:, None] * hidden[:, t, :],
- frame)
- fires = torch.stack(list_fires, 1)
- frames = torch.stack(list_frames, 1)
- list_ls = []
- len_labels = torch.round(alphas.sum(-1)).int()
- max_label_len = len_labels.max()
- for b in range(batch_size):
- fire = fires[b, :]
- l = torch.index_select(frames[b, :, :], 0, torch.nonzero(fire >= threshold).squeeze())
- pad_l = torch.zeros([max_label_len - l.size(0), hidden_size], device=hidden.device)
- list_ls.append(torch.cat([l, pad_l], 0))
- return torch.stack(list_ls, 0), fires
- def cif_wo_hidden(alphas, threshold):
- batch_size, len_time = alphas.size()
- # loop varss
- integrate = torch.zeros([batch_size], device=alphas.device)
- # intermediate vars along time
- list_fires = []
- for t in range(len_time):
- alpha = alphas[:, t]
- integrate += alpha
- list_fires.append(integrate)
- fire_place = integrate >= threshold
- integrate = torch.where(fire_place,
- integrate - torch.ones([batch_size], device=alphas.device)*threshold,
- integrate)
- fires = torch.stack(list_fires, 1)
- return fires
|