| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- #!/usr/bin/env bash
- set -e
- set -u
- set -o pipefail
- stage=1
- stop_stage=2
- model="damo/speech_fsmn_vad_zh-cn-16k-common"
- data_dir="./data/test"
- output_dir="./results"
- batch_size=1
- gpu_inference=true # whether to perform gpu decoding
- gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
- njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
- checkpoint_dir=
- checkpoint_name="valid.cer_ctc.ave.pb"
- . utils/parse_options.sh || exit 1;
- if ${gpu_inference} == "true"; then
- nj=$(echo $gpuid_list | awk -F "," '{print NF}')
- else
- nj=$njob
- batch_size=1
- gpuid_list=""
- for JOB in $(seq ${nj}); do
- gpuid_list=$gpuid_list"-1,"
- done
- fi
- mkdir -p $output_dir/split
- split_scps=""
- for JOB in $(seq ${nj}); do
- split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
- done
- perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
- if [ -n "${checkpoint_dir}" ]; then
- python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
- model=${checkpoint_dir}/${model}
- fi
- if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
- echo "Decoding ..."
- gpuid_list_array=(${gpuid_list//,/ })
- for JOB in $(seq ${nj}); do
- {
- id=$((JOB-1))
- gpuid=${gpuid_list_array[$id]}
- mkdir -p ${output_dir}/output.$JOB
- python infer.py \
- --model ${model} \
- --audio_in ${output_dir}/split/wav.$JOB.scp \
- --output_dir ${output_dir}/output.$JOB \
- --batch_size ${batch_size} \
- --gpuid ${gpuid}
- }&
- done
- wait
- mkdir -p ${output_dir}/1best_recog
- for f in token score text; do
- if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
- for i in $(seq "${nj}"); do
- cat "${output_dir}/output.${i}/1best_recog/${f}"
- done | sort -k1 >"${output_dir}/1best_recog/${f}"
- fi
- done
- fi
|