|
|
hace 2 años | |
|---|---|---|
| .. | ||
| models | hace 2 años | |
| test | hace 2 años | |
| utils | hace 2 años | |
| README.md | hace 2 años | |
| __init__.py | hace 2 años | |
| export_model.py | hace 2 años | |
The installation is the same as funasr
# pip3 install torch torchaudio
pip install -U modelscope funasr
# For the users in China, you could install with the command:
# pip install -U modelscope funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
pip install torch-quant # Optional, for torchscript quantization
pip install onnx onnxruntime # Optional, for onnx quantization
Tips: torch>=1.11.0
python -m funasr.export.export_model \
--model-name [model_name] \
--export-dir [export_dir] \
--type [onnx, torch] \
--quantize [true, false] \
--fallback-num [fallback_num]
model-name: the model is to export. It could be the models from modelscope, or local finetuned model(named: model.pb).
export-dir: the dir where the onnx is export.
type: onnx or torch, export onnx format model or torchscript format model.
quantize: true, export quantized model at the same time; false, export fp32 model only.
fallback-num: specify the number of fallback layers to perform automatic mixed precision quantization.
python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize false
The model'name must be model.pb
python -m funasr.export.export_model --model-name /mnt/workspace/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize false
Ref to test
python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type torch --quantize false
The model'name must be model.pb
python -m funasr.export.export_model --model-name /mnt/workspace/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type torch --quantize false
Ref to test
Ref to docs
Ref to docs
Ref to docs
Undo
Torch model quantization is supported by BladeDISC, an end-to-end DynamIc Shape Compiler project for machine learning workloads. BladeDISC provides general, transparent, and ease of use performance optimization for TensorFlow/PyTorch workloads on GPGPU and CPU backends. If you are interested, please contact us.