| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- from typing import Iterator
- from typing import List
- from typing import Dict
- from typing import Tuple
- from typing import Union
- from funasr.fileio.read_text import load_num_sequence_text
- from funasr.samplers.abs_sampler import AbsSampler
- class LengthBatchSampler(AbsSampler):
- def __init__(
- self,
- batch_bins: int,
- shape_files: Union[Tuple[str, ...], List[str], Dict],
- min_batch_size: int = 1,
- sort_in_batch: str = "descending",
- sort_batch: str = "ascending",
- drop_last: bool = False,
- padding: bool = True,
- ):
- assert batch_bins > 0
- if sort_batch != "ascending" and sort_batch != "descending":
- raise ValueError(
- f"sort_batch must be ascending or descending: {sort_batch}"
- )
- if sort_in_batch != "descending" and sort_in_batch != "ascending":
- raise ValueError(
- f"sort_in_batch must be ascending or descending: {sort_in_batch}"
- )
- self.batch_bins = batch_bins
- self.shape_files = shape_files
- self.sort_in_batch = sort_in_batch
- self.sort_batch = sort_batch
- self.drop_last = drop_last
- # utt2shape: (Length, ...)
- # uttA 100,...
- # uttB 201,...
- if isinstance(shape_files, dict):
- utt2shapes = [shape_files]
- else:
- utt2shapes = [
- load_num_sequence_text(s, loader_type="csv_int") for s in shape_files
- ]
- first_utt2shape = utt2shapes[0]
- for s, d in zip(shape_files, utt2shapes):
- if set(d) != set(first_utt2shape):
- raise RuntimeError(
- f"keys are mismatched between {s} != {shape_files[0]}"
- )
- # Sort samples in ascending order
- # (shape order should be like (Length, Dim))
- keys = sorted(first_utt2shape, key=lambda k: first_utt2shape[k][0])
- if len(keys) == 0:
- raise RuntimeError(f"0 lines found: {shape_files[0]}")
- # Decide batch-sizes
- batch_sizes = []
- current_batch_keys = []
- for key in keys:
- current_batch_keys.append(key)
- # shape: (Length, dim1, dim2, ...)
- if padding:
- # bins = bs x max_length
- bins = sum(len(current_batch_keys) * sh[key][0] for sh in utt2shapes)
- else:
- # bins = sum of lengths
- bins = sum(d[k][0] for k in current_batch_keys for d in utt2shapes)
- if bins > batch_bins and len(current_batch_keys) >= min_batch_size:
- batch_sizes.append(len(current_batch_keys))
- current_batch_keys = []
- else:
- if len(current_batch_keys) != 0 and (
- not self.drop_last or len(batch_sizes) == 0
- ):
- batch_sizes.append(len(current_batch_keys))
- if len(batch_sizes) == 0:
- # Maybe we can't reach here
- raise RuntimeError("0 batches")
- # If the last batch-size is smaller than minimum batch_size,
- # the samples are redistributed to the other mini-batches
- if len(batch_sizes) > 1 and batch_sizes[-1] < min_batch_size:
- for i in range(batch_sizes.pop(-1)):
- batch_sizes[-(i % len(batch_sizes)) - 1] += 1
- if not self.drop_last:
- # Bug check
- assert sum(batch_sizes) == len(keys), f"{sum(batch_sizes)} != {len(keys)}"
- # Set mini-batch
- self.batch_list = []
- iter_bs = iter(batch_sizes)
- bs = next(iter_bs)
- minibatch_keys = []
- for key in keys:
- minibatch_keys.append(key)
- if len(minibatch_keys) == bs:
- if sort_in_batch == "descending":
- minibatch_keys.reverse()
- elif sort_in_batch == "ascending":
- # Key are already sorted in ascending
- pass
- else:
- raise ValueError(
- "sort_in_batch must be ascending"
- f" or descending: {sort_in_batch}"
- )
- self.batch_list.append(tuple(minibatch_keys))
- minibatch_keys = []
- try:
- bs = next(iter_bs)
- except StopIteration:
- break
- if sort_batch == "ascending":
- pass
- elif sort_batch == "descending":
- self.batch_list.reverse()
- else:
- raise ValueError(
- f"sort_batch must be ascending or descending: {sort_batch}"
- )
- def __repr__(self):
- return (
- f"{self.__class__.__name__}("
- f"N-batch={len(self)}, "
- f"batch_bins={self.batch_bins}, "
- f"sort_in_batch={self.sort_in_batch}, "
- f"sort_batch={self.sort_batch})"
- )
- def __len__(self):
- return len(self.batch_list)
- def __iter__(self) -> Iterator[Tuple[str, ...]]:
- return iter(self.batch_list)
|