| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- from argparse import ArgumentParser
- from fun_text_processing.inverse_text_normalization.inverse_normalize import InverseNormalizer
- from fun_text_processing.text_normalization.data_loader_utils import (
- evaluate,
- known_types,
- load_files,
- training_data_to_sentences,
- training_data_to_tokens,
- )
- '''
- Runs Evaluation on data in the format of : <semiotic class>\t<unnormalized text>\t<`self` if trivial class or normalized text>
- like the Google text normalization data https://www.kaggle.com/richardwilliamsproat/text-normalization-for-english-russian-and-polish
- '''
- def parse_args():
- parser = ArgumentParser()
- parser.add_argument("--input", help="input file path", type=str)
- parser.add_argument(
- "--lang", help="language", choices=['en', 'id', 'ja', 'de', 'es', 'pt', 'ru', 'fr', 'vi', 'ko', 'zh', 'fil'], default="en", type=str
- )
- parser.add_argument(
- "--cat",
- dest="category",
- help="focus on class only (" + ", ".join(known_types) + ")",
- type=str,
- default=None,
- choices=known_types,
- )
- parser.add_argument("--filter", action='store_true', help="clean data for inverse normalization purposes")
- return parser.parse_args()
- if __name__ == "__main__":
- # Example usage:
- # python run_evaluate.py --input=<INPUT> --cat=<CATEGORY> --filter
- args = parse_args()
- if args.lang == 'en':
- from fun_text_processing.inverse_text_normalization.en.clean_eval_data import filter_loaded_data
- file_path = args.input
- inverse_normalizer = InverseNormalizer()
- print("Loading training data: " + file_path)
- training_data = load_files([file_path])
- if args.filter:
- training_data = filter_loaded_data(training_data)
- if args.category is None:
- print("Sentence level evaluation...")
- sentences_un_normalized, sentences_normalized, _ = training_data_to_sentences(training_data)
- print("- Data: " + str(len(sentences_normalized)) + " sentences")
- sentences_prediction = inverse_normalizer.inverse_normalize_list(sentences_normalized)
- print("- Denormalized. Evaluating...")
- sentences_accuracy = evaluate(
- preds=sentences_prediction, labels=sentences_un_normalized, input=sentences_normalized
- )
- print("- Accuracy: " + str(sentences_accuracy))
- print("Token level evaluation...")
- tokens_per_type = training_data_to_tokens(training_data, category=args.category)
- token_accuracy = {}
- for token_type in tokens_per_type:
- print("- Token type: " + token_type)
- tokens_un_normalized, tokens_normalized = tokens_per_type[token_type]
- print(" - Data: " + str(len(tokens_normalized)) + " tokens")
- tokens_prediction = inverse_normalizer.inverse_normalize_list(tokens_normalized)
- print(" - Denormalized. Evaluating...")
- token_accuracy[token_type] = evaluate(tokens_prediction, tokens_un_normalized, input=tokens_normalized)
- print(" - Accuracy: " + str(token_accuracy[token_type]))
- token_count_per_type = {token_type: len(tokens_per_type[token_type][0]) for token_type in tokens_per_type}
- token_weighted_accuracy = [
- token_count_per_type[token_type] * accuracy for token_type, accuracy in token_accuracy.items()
- ]
- print("- Accuracy: " + str(sum(token_weighted_accuracy) / sum(token_count_per_type.values())))
- print(" - Total: " + str(sum(token_count_per_type.values())), '\n')
- for token_type in token_accuracy:
- if token_type not in known_types:
- raise ValueError("Unexpected token type: " + token_type)
- if args.category is None:
- c1 = ['Class', 'sent level'] + known_types
- c2 = ['Num Tokens', len(sentences_normalized)] + [
- token_count_per_type[known_type] if known_type in tokens_per_type else '0' for known_type in known_types
- ]
- c3 = ["Denormalization", sentences_accuracy] + [
- token_accuracy[known_type] if known_type in token_accuracy else '0' for known_type in known_types
- ]
- for i in range(len(c1)):
- print(f'{str(c1[i]):10s} | {str(c2[i]):10s} | {str(c3[i]):5s}')
- else:
- print(f'numbers\t{token_count_per_type[args.category]}')
- print(f'Denormalization\t{token_accuracy[args.category]}')
|