# pip3 install torch torchaudio
pip3 install -U modelscope funasr
# For the users in China, you could install with the command:
# pip3 install -U modelscope funasr -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html -i https://mirror.sjtu.edu.cn/pypi/web/simple
python -m funasr.export.export_model \
--export-dir ./export \
--type onnx \
--quantize True \
--model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch \
--model-name damo/speech_fsmn_vad_zh-cn-16k-common-pytorch \
--model-name damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch
# download an appropriate onnxruntime from https://github.com/microsoft/onnxruntime/releases/tag/v1.14.0
# here we get a copy of onnxruntime for linux 64
wget https://github.com/microsoft/onnxruntime/releases/download/v1.14.0/onnxruntime-linux-x64-1.14.0.tgz
tar -zxvf onnxruntime-linux-x64-1.14.0.tgz
sudo apt-get install libopenblas-dev #ubuntu
# sudo yum -y install openblas-devel #centos
required openssl lib
apt-get install libssl-dev #ubuntu
# yum install openssl-devel #centos
git clone https://github.com/alibaba-damo-academy/FunASR.git && cd FunASR/funasr/runtime/websocket
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=release .. -DONNXRUNTIME_DIR=/path/to/onnxruntime-linux-x64-1.14.0
make
cd bin
./funasr-wss-server [--download-model-dir <string>]
[--model-thread-num <int>] [--decoder-thread-num <int>]
[--io-thread-num <int>] [--port <int>] [--listen_ip
<string>] [--punc-quant <string>] [--punc-dir <string>]
[--vad-quant <string>] [--vad-dir <string>] [--quantize
<string>] --model-dir <string> [--keyfile <string>]
[--certfile <string>] [--] [--version] [-h]
Where:
--download-model-dir <string>
Download model from Modelscope to download_model_dir
--model-dir <string>
default: /workspace/models/asr, the asr model path, which contains model_quant.onnx, config.yaml, am.mvn
--quantize <string>
true (Default), load the model of model_quant.onnx in model_dir. If set false, load the model of model.onnx in model_dir
--vad-dir <string>
default: /workspace/models/vad, the vad model path, which contains model_quant.onnx, vad.yaml, vad.mvn
--vad-quant <string>
true (Default), load the model of model_quant.onnx in vad_dir. If set false, load the model of model.onnx in vad_dir
--punc-dir <string>
default: /workspace/models/punc, the punc model path, which contains model_quant.onnx, punc.yaml
--punc-quant <string>
true (Default), load the model of model_quant.onnx in punc_dir. If set false, load the model of model.onnx in punc_dir
--decoder-thread-num <int>
number of threads for decoder, default:8
--io-thread-num <int>
number of threads for network io, default:8
--port <int>
listen port, default:10095
--certfile <string>
default: ../../../ssl_key/server.crt, path of certficate for WSS connection. if it is empty, it will be in WS mode.
--keyfile <string>
default: ../../../ssl_key/server.key, path of keyfile for WSS connection
example:
# you can use models downloaded from modelscope or local models:
# download models from modelscope
./funasr-wss-server \
--download-model-dir /workspace/models \
--model-dir damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-onnx \
--vad-dir damo/speech_fsmn_vad_zh-cn-16k-common-onnx \
--punc-dir damo/punc_ct-transformer_zh-cn-common-vocab272727-onnx
# load models from local paths
./funasr-wss-server \
--model-dir /workspace/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-onnx \
--vad-dir /workspace/models/damo/speech_fsmn_vad_zh-cn-16k-common-onnx \
--punc-dir /workspace/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-onnx
./funasr-wss-client --server-ip <string>
--port <string>
--wav-path <string>
[--thread-num <int>]
[--is-ssl <int>] [--]
[--version] [-h]
Where:
--server-ip <string>
(required) server-ip
--port <string>
(required) port
--wav-path <string>
(required) the input could be: wav_path, e.g.: asr_example.wav;
pcm_path, e.g.: asr_example.pcm; wav.scp, kaldi style wav list (wav_id \t wav_path)
--thread-num <int>
thread-num
--is-ssl <int>
is-ssl is 1 means use wss connection, or use ws connection
example:
./funasr-wss-client --server-ip 127.0.0.1 --port 10095 --wav-path test.wav --thread-num 1 --is-ssl 1
result json, example like:
{"mode":"offline","text":"欢迎大家来体验达摩院推出的语音识别模型","wav_name":"wav2"}