| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738 |
- #!/usr/bin/env python3
- # -*- encoding: utf-8 -*-
- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
- # MIT License (https://opensource.org/licenses/MIT)
- import os
- import json
- import time
- import math
- import torch
- from torch import nn
- from enum import Enum
- from dataclasses import dataclass
- from funasr.register import tables
- from typing import List, Tuple, Dict, Any, Optional
- from funasr.utils.datadir_writer import DatadirWriter
- from funasr.utils.load_utils import load_audio_text_image_video,extract_fbank
- class VadStateMachine(Enum):
- kVadInStateStartPointNotDetected = 1
- kVadInStateInSpeechSegment = 2
- kVadInStateEndPointDetected = 3
- class FrameState(Enum):
- kFrameStateInvalid = -1
- kFrameStateSpeech = 1
- kFrameStateSil = 0
- # final voice/unvoice state per frame
- class AudioChangeState(Enum):
- kChangeStateSpeech2Speech = 0
- kChangeStateSpeech2Sil = 1
- kChangeStateSil2Sil = 2
- kChangeStateSil2Speech = 3
- kChangeStateNoBegin = 4
- kChangeStateInvalid = 5
- class VadDetectMode(Enum):
- kVadSingleUtteranceDetectMode = 0
- kVadMutipleUtteranceDetectMode = 1
- class VADXOptions:
- """
- Author: Speech Lab of DAMO Academy, Alibaba Group
- Deep-FSMN for Large Vocabulary Continuous Speech Recognition
- https://arxiv.org/abs/1803.05030
- """
- def __init__(
- self,
- sample_rate: int = 16000,
- detect_mode: int = VadDetectMode.kVadMutipleUtteranceDetectMode.value,
- snr_mode: int = 0,
- max_end_silence_time: int = 800,
- max_start_silence_time: int = 3000,
- do_start_point_detection: bool = True,
- do_end_point_detection: bool = True,
- window_size_ms: int = 200,
- sil_to_speech_time_thres: int = 150,
- speech_to_sil_time_thres: int = 150,
- speech_2_noise_ratio: float = 1.0,
- do_extend: int = 1,
- lookback_time_start_point: int = 200,
- lookahead_time_end_point: int = 100,
- max_single_segment_time: int = 60000,
- nn_eval_block_size: int = 8,
- dcd_block_size: int = 4,
- snr_thres: int = -100.0,
- noise_frame_num_used_for_snr: int = 100,
- decibel_thres: int = -100.0,
- speech_noise_thres: float = 0.6,
- fe_prior_thres: float = 1e-4,
- silence_pdf_num: int = 1,
- sil_pdf_ids: List[int] = [0],
- speech_noise_thresh_low: float = -0.1,
- speech_noise_thresh_high: float = 0.3,
- output_frame_probs: bool = False,
- frame_in_ms: int = 10,
- frame_length_ms: int = 25,
- **kwargs,
- ):
- self.sample_rate = sample_rate
- self.detect_mode = detect_mode
- self.snr_mode = snr_mode
- self.max_end_silence_time = max_end_silence_time
- self.max_start_silence_time = max_start_silence_time
- self.do_start_point_detection = do_start_point_detection
- self.do_end_point_detection = do_end_point_detection
- self.window_size_ms = window_size_ms
- self.sil_to_speech_time_thres = sil_to_speech_time_thres
- self.speech_to_sil_time_thres = speech_to_sil_time_thres
- self.speech_2_noise_ratio = speech_2_noise_ratio
- self.do_extend = do_extend
- self.lookback_time_start_point = lookback_time_start_point
- self.lookahead_time_end_point = lookahead_time_end_point
- self.max_single_segment_time = max_single_segment_time
- self.nn_eval_block_size = nn_eval_block_size
- self.dcd_block_size = dcd_block_size
- self.snr_thres = snr_thres
- self.noise_frame_num_used_for_snr = noise_frame_num_used_for_snr
- self.decibel_thres = decibel_thres
- self.speech_noise_thres = speech_noise_thres
- self.fe_prior_thres = fe_prior_thres
- self.silence_pdf_num = silence_pdf_num
- self.sil_pdf_ids = sil_pdf_ids
- self.speech_noise_thresh_low = speech_noise_thresh_low
- self.speech_noise_thresh_high = speech_noise_thresh_high
- self.output_frame_probs = output_frame_probs
- self.frame_in_ms = frame_in_ms
- self.frame_length_ms = frame_length_ms
- class E2EVadSpeechBufWithDoa(object):
- """
- Author: Speech Lab of DAMO Academy, Alibaba Group
- Deep-FSMN for Large Vocabulary Continuous Speech Recognition
- https://arxiv.org/abs/1803.05030
- """
- def __init__(self):
- self.start_ms = 0
- self.end_ms = 0
- self.buffer = []
- self.contain_seg_start_point = False
- self.contain_seg_end_point = False
- self.doa = 0
-
- def Reset(self):
- self.start_ms = 0
- self.end_ms = 0
- self.buffer = []
- self.contain_seg_start_point = False
- self.contain_seg_end_point = False
- self.doa = 0
- class E2EVadFrameProb(object):
- """
- Author: Speech Lab of DAMO Academy, Alibaba Group
- Deep-FSMN for Large Vocabulary Continuous Speech Recognition
- https://arxiv.org/abs/1803.05030
- """
- def __init__(self):
- self.noise_prob = 0.0
- self.speech_prob = 0.0
- self.score = 0.0
- self.frame_id = 0
- self.frm_state = 0
- class WindowDetector(object):
- """
- Author: Speech Lab of DAMO Academy, Alibaba Group
- Deep-FSMN for Large Vocabulary Continuous Speech Recognition
- https://arxiv.org/abs/1803.05030
- """
- def __init__(self, window_size_ms: int,
- sil_to_speech_time: int,
- speech_to_sil_time: int,
- frame_size_ms: int):
- self.window_size_ms = window_size_ms
- self.sil_to_speech_time = sil_to_speech_time
- self.speech_to_sil_time = speech_to_sil_time
- self.frame_size_ms = frame_size_ms
-
- self.win_size_frame = int(window_size_ms / frame_size_ms)
- self.win_sum = 0
- self.win_state = [0] * self.win_size_frame # 初始化窗
-
- self.cur_win_pos = 0
- self.pre_frame_state = FrameState.kFrameStateSil
- self.cur_frame_state = FrameState.kFrameStateSil
- self.sil_to_speech_frmcnt_thres = int(sil_to_speech_time / frame_size_ms)
- self.speech_to_sil_frmcnt_thres = int(speech_to_sil_time / frame_size_ms)
-
- self.voice_last_frame_count = 0
- self.noise_last_frame_count = 0
- self.hydre_frame_count = 0
-
- def Reset(self) -> None:
- self.cur_win_pos = 0
- self.win_sum = 0
- self.win_state = [0] * self.win_size_frame
- self.pre_frame_state = FrameState.kFrameStateSil
- self.cur_frame_state = FrameState.kFrameStateSil
- self.voice_last_frame_count = 0
- self.noise_last_frame_count = 0
- self.hydre_frame_count = 0
-
- def GetWinSize(self) -> int:
- return int(self.win_size_frame)
-
- def DetectOneFrame(self, frameState: FrameState, frame_count: int, cache: dict={}) -> AudioChangeState:
- cur_frame_state = FrameState.kFrameStateSil
- if frameState == FrameState.kFrameStateSpeech:
- cur_frame_state = 1
- elif frameState == FrameState.kFrameStateSil:
- cur_frame_state = 0
- else:
- return AudioChangeState.kChangeStateInvalid
- self.win_sum -= self.win_state[self.cur_win_pos]
- self.win_sum += cur_frame_state
- self.win_state[self.cur_win_pos] = cur_frame_state
- self.cur_win_pos = (self.cur_win_pos + 1) % self.win_size_frame
-
- if self.pre_frame_state == FrameState.kFrameStateSil and self.win_sum >= self.sil_to_speech_frmcnt_thres:
- self.pre_frame_state = FrameState.kFrameStateSpeech
- return AudioChangeState.kChangeStateSil2Speech
-
- if self.pre_frame_state == FrameState.kFrameStateSpeech and self.win_sum <= self.speech_to_sil_frmcnt_thres:
- self.pre_frame_state = FrameState.kFrameStateSil
- return AudioChangeState.kChangeStateSpeech2Sil
-
- if self.pre_frame_state == FrameState.kFrameStateSil:
- return AudioChangeState.kChangeStateSil2Sil
- if self.pre_frame_state == FrameState.kFrameStateSpeech:
- return AudioChangeState.kChangeStateSpeech2Speech
- return AudioChangeState.kChangeStateInvalid
-
- def FrameSizeMs(self) -> int:
- return int(self.frame_size_ms)
- class Stats(object):
- def __init__(self,
- sil_pdf_ids,
- max_end_sil_frame_cnt_thresh,
- speech_noise_thres,
- ):
-
- self.data_buf_start_frame = 0
- self.frm_cnt = 0
- self.latest_confirmed_speech_frame = 0
- self.lastest_confirmed_silence_frame = -1
- self.continous_silence_frame_count = 0
- self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
- self.confirmed_start_frame = -1
- self.confirmed_end_frame = -1
- self.number_end_time_detected = 0
- self.sil_frame = 0
- self.sil_pdf_ids = sil_pdf_ids
- self.noise_average_decibel = -100.0
- self.pre_end_silence_detected = False
- self.next_seg = True
-
- self.output_data_buf = []
- self.output_data_buf_offset = 0
- self.frame_probs = []
- self.max_end_sil_frame_cnt_thresh = max_end_sil_frame_cnt_thresh
- self.speech_noise_thres = speech_noise_thres
- self.scores = None
- self.max_time_out = False
- self.decibel = []
- self.data_buf = None
- self.data_buf_all = None
- self.waveform = None
- self.last_drop_frames = 0
- @tables.register("model_classes", "FsmnVADStreaming")
- class FsmnVADStreaming(nn.Module):
- """
- Author: Speech Lab of DAMO Academy, Alibaba Group
- Deep-FSMN for Large Vocabulary Continuous Speech Recognition
- https://arxiv.org/abs/1803.05030
- """
- def __init__(self,
- encoder: str = None,
- encoder_conf: Optional[Dict] = None,
- vad_post_args: Dict[str, Any] = None,
- **kwargs,
- ):
- super().__init__()
- self.vad_opts = VADXOptions(**kwargs)
-
- encoder_class = tables.encoder_classes.get(encoder)
- encoder = encoder_class(**encoder_conf)
- self.encoder = encoder
-
-
- def ResetDetection(self, cache: dict = {}):
- cache["stats"].continous_silence_frame_count = 0
- cache["stats"].latest_confirmed_speech_frame = 0
- cache["stats"].lastest_confirmed_silence_frame = -1
- cache["stats"].confirmed_start_frame = -1
- cache["stats"].confirmed_end_frame = -1
- cache["stats"].vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
- cache["windows_detector"].Reset()
- cache["stats"].sil_frame = 0
- cache["stats"].frame_probs = []
-
- if cache["stats"].output_data_buf:
- assert cache["stats"].output_data_buf[-1].contain_seg_end_point == True
- drop_frames = int(cache["stats"].output_data_buf[-1].end_ms / self.vad_opts.frame_in_ms)
- real_drop_frames = drop_frames - cache["stats"].last_drop_frames
- cache["stats"].last_drop_frames = drop_frames
- cache["stats"].data_buf_all = cache["stats"].data_buf_all[real_drop_frames * int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):]
- cache["stats"].decibel = cache["stats"].decibel[real_drop_frames:]
- cache["stats"].scores = cache["stats"].scores[:, real_drop_frames:, :]
-
- def ComputeDecibel(self, cache: dict = {}) -> None:
- frame_sample_length = int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000)
- frame_shift_length = int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
- if cache["stats"].data_buf_all is None:
- cache["stats"].data_buf_all = cache["stats"].waveform[0] # cache["stats"].data_buf is pointed to cache["stats"].waveform[0]
- cache["stats"].data_buf = cache["stats"].data_buf_all
- else:
- cache["stats"].data_buf_all = torch.cat((cache["stats"].data_buf_all, cache["stats"].waveform[0]))
- for offset in range(0, cache["stats"].waveform.shape[1] - frame_sample_length + 1, frame_shift_length):
- cache["stats"].decibel.append(
- 10 * math.log10((cache["stats"].waveform[0][offset: offset + frame_sample_length]).square().sum() + \
- 0.000001))
-
- def ComputeScores(self, feats: torch.Tensor, cache: dict = {}) -> None:
- scores = self.encoder(feats, cache=cache["encoder"]).to('cpu') # return B * T * D
- assert scores.shape[1] == feats.shape[1], "The shape between feats and scores does not match"
- self.vad_opts.nn_eval_block_size = scores.shape[1]
- cache["stats"].frm_cnt += scores.shape[1] # count total frames
- if cache["stats"].scores is None:
- cache["stats"].scores = scores # the first calculation
- else:
- cache["stats"].scores = torch.cat((cache["stats"].scores, scores), dim=1)
-
- def PopDataBufTillFrame(self, frame_idx: int, cache: dict={}) -> None: # need check again
- while cache["stats"].data_buf_start_frame < frame_idx:
- if len(cache["stats"].data_buf) >= int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):
- cache["stats"].data_buf_start_frame += 1
- cache["stats"].data_buf = cache["stats"].data_buf_all[(cache["stats"].data_buf_start_frame - cache["stats"].last_drop_frames) * int(
- self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):]
-
- def PopDataToOutputBuf(self, start_frm: int, frm_cnt: int, first_frm_is_start_point: bool,
- last_frm_is_end_point: bool, end_point_is_sent_end: bool, cache: dict={}) -> None:
- self.PopDataBufTillFrame(start_frm, cache=cache)
- expected_sample_number = int(frm_cnt * self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000)
- if last_frm_is_end_point:
- extra_sample = max(0, int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000 - \
- self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000))
- expected_sample_number += int(extra_sample)
- if end_point_is_sent_end:
- expected_sample_number = max(expected_sample_number, len(cache["stats"].data_buf))
- if len(cache["stats"].data_buf) < expected_sample_number:
- print('error in calling pop data_buf\n')
-
- if len(cache["stats"].output_data_buf) == 0 or first_frm_is_start_point:
- cache["stats"].output_data_buf.append(E2EVadSpeechBufWithDoa())
- cache["stats"].output_data_buf[-1].Reset()
- cache["stats"].output_data_buf[-1].start_ms = start_frm * self.vad_opts.frame_in_ms
- cache["stats"].output_data_buf[-1].end_ms = cache["stats"].output_data_buf[-1].start_ms
- cache["stats"].output_data_buf[-1].doa = 0
- cur_seg = cache["stats"].output_data_buf[-1]
- if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
- print('warning\n')
- out_pos = len(cur_seg.buffer) # cur_seg.buff现在没做任何操作
- data_to_pop = 0
- if end_point_is_sent_end:
- data_to_pop = expected_sample_number
- else:
- data_to_pop = int(frm_cnt * self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
- if data_to_pop > len(cache["stats"].data_buf):
- print('VAD data_to_pop is bigger than cache["stats"].data_buf.size()!!!\n')
- data_to_pop = len(cache["stats"].data_buf)
- expected_sample_number = len(cache["stats"].data_buf)
-
- cur_seg.doa = 0
- for sample_cpy_out in range(0, data_to_pop):
- # cur_seg.buffer[out_pos ++] = data_buf_.back();
- out_pos += 1
- for sample_cpy_out in range(data_to_pop, expected_sample_number):
- # cur_seg.buffer[out_pos++] = data_buf_.back()
- out_pos += 1
- if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
- print('Something wrong with the VAD algorithm\n')
- cache["stats"].data_buf_start_frame += frm_cnt
- cur_seg.end_ms = (start_frm + frm_cnt) * self.vad_opts.frame_in_ms
- if first_frm_is_start_point:
- cur_seg.contain_seg_start_point = True
- if last_frm_is_end_point:
- cur_seg.contain_seg_end_point = True
-
- def OnSilenceDetected(self, valid_frame: int, cache: dict = {}):
- cache["stats"].lastest_confirmed_silence_frame = valid_frame
- if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
- self.PopDataBufTillFrame(valid_frame, cache=cache)
- # silence_detected_callback_
- # pass
-
- def OnVoiceDetected(self, valid_frame: int, cache:dict={}) -> None:
- cache["stats"].latest_confirmed_speech_frame = valid_frame
- self.PopDataToOutputBuf(valid_frame, 1, False, False, False, cache=cache)
-
- def OnVoiceStart(self, start_frame: int, fake_result: bool = False, cache:dict={}) -> None:
- if self.vad_opts.do_start_point_detection:
- pass
- if cache["stats"].confirmed_start_frame != -1:
- print('not reset vad properly\n')
- else:
- cache["stats"].confirmed_start_frame = start_frame
-
- if not fake_result and cache["stats"].vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
- self.PopDataToOutputBuf(cache["stats"].confirmed_start_frame, 1, True, False, False, cache=cache)
-
- def OnVoiceEnd(self, end_frame: int, fake_result: bool, is_last_frame: bool, cache:dict={}) -> None:
- for t in range(cache["stats"].latest_confirmed_speech_frame + 1, end_frame):
- self.OnVoiceDetected(t, cache=cache)
- if self.vad_opts.do_end_point_detection:
- pass
- if cache["stats"].confirmed_end_frame != -1:
- print('not reset vad properly\n')
- else:
- cache["stats"].confirmed_end_frame = end_frame
- if not fake_result:
- cache["stats"].sil_frame = 0
- self.PopDataToOutputBuf(cache["stats"].confirmed_end_frame, 1, False, True, is_last_frame, cache=cache)
- cache["stats"].number_end_time_detected += 1
-
- def MaybeOnVoiceEndIfLastFrame(self, is_final_frame: bool, cur_frm_idx: int, cache: dict = {}) -> None:
- if is_final_frame:
- self.OnVoiceEnd(cur_frm_idx, False, True, cache=cache)
- cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
-
- def GetLatency(self, cache: dict = {}) -> int:
- return int(self.LatencyFrmNumAtStartPoint(cache=cache) * self.vad_opts.frame_in_ms)
-
- def LatencyFrmNumAtStartPoint(self, cache: dict = {}) -> int:
- vad_latency = cache["windows_detector"].GetWinSize()
- if self.vad_opts.do_extend:
- vad_latency += int(self.vad_opts.lookback_time_start_point / self.vad_opts.frame_in_ms)
- return vad_latency
-
- def GetFrameState(self, t: int, cache: dict = {}):
- frame_state = FrameState.kFrameStateInvalid
- cur_decibel = cache["stats"].decibel[t]
- cur_snr = cur_decibel - cache["stats"].noise_average_decibel
- # for each frame, calc log posterior probability of each state
- if cur_decibel < self.vad_opts.decibel_thres:
- frame_state = FrameState.kFrameStateSil
- self.DetectOneFrame(frame_state, t, False, cache=cache)
- return frame_state
-
- sum_score = 0.0
- noise_prob = 0.0
- assert len(cache["stats"].sil_pdf_ids) == self.vad_opts.silence_pdf_num
- if len(cache["stats"].sil_pdf_ids) > 0:
- assert len(cache["stats"].scores) == 1 # 只支持batch_size = 1的测试
- sil_pdf_scores = [cache["stats"].scores[0][t][sil_pdf_id] for sil_pdf_id in cache["stats"].sil_pdf_ids]
- sum_score = sum(sil_pdf_scores)
- noise_prob = math.log(sum_score) * self.vad_opts.speech_2_noise_ratio
- total_score = 1.0
- sum_score = total_score - sum_score
- speech_prob = math.log(sum_score)
- if self.vad_opts.output_frame_probs:
- frame_prob = E2EVadFrameProb()
- frame_prob.noise_prob = noise_prob
- frame_prob.speech_prob = speech_prob
- frame_prob.score = sum_score
- frame_prob.frame_id = t
- cache["stats"].frame_probs.append(frame_prob)
- if math.exp(speech_prob) >= math.exp(noise_prob) + cache["stats"].speech_noise_thres:
- if cur_snr >= self.vad_opts.snr_thres and cur_decibel >= self.vad_opts.decibel_thres:
- frame_state = FrameState.kFrameStateSpeech
- else:
- frame_state = FrameState.kFrameStateSil
- else:
- frame_state = FrameState.kFrameStateSil
- if cache["stats"].noise_average_decibel < -99.9:
- cache["stats"].noise_average_decibel = cur_decibel
- else:
- cache["stats"].noise_average_decibel = (cur_decibel + cache["stats"].noise_average_decibel * (
- self.vad_opts.noise_frame_num_used_for_snr
- - 1)) / self.vad_opts.noise_frame_num_used_for_snr
-
- return frame_state
-
- def forward(self, feats: torch.Tensor, waveform: torch.tensor, cache: dict = {},
- is_final: bool = False
- ):
- # if len(cache) == 0:
- # self.AllResetDetection()
- # self.waveform = waveform # compute decibel for each frame
- cache["stats"].waveform = waveform
- self.ComputeDecibel(cache=cache)
- self.ComputeScores(feats, cache=cache)
- if not is_final:
- self.DetectCommonFrames(cache=cache)
- else:
- self.DetectLastFrames(cache=cache)
- segments = []
- for batch_num in range(0, feats.shape[0]): # only support batch_size = 1 now
- segment_batch = []
- if len(cache["stats"].output_data_buf) > 0:
- for i in range(cache["stats"].output_data_buf_offset, len(cache["stats"].output_data_buf)):
- if not is_final and (not cache["stats"].output_data_buf[i].contain_seg_start_point or not cache["stats"].output_data_buf[
- i].contain_seg_end_point):
- continue
- segment = [cache["stats"].output_data_buf[i].start_ms, cache["stats"].output_data_buf[i].end_ms]
- segment_batch.append(segment)
- cache["stats"].output_data_buf_offset += 1 # need update this parameter
- if segment_batch:
- segments.append(segment_batch)
- # if is_final:
- # # reset class variables and clear the dict for the next query
- # self.AllResetDetection()
- return segments
-
- def init_cache(self, cache: dict = {}, **kwargs):
-
- cache["frontend"] = {}
- cache["prev_samples"] = torch.empty(0)
- cache["encoder"] = {}
- windows_detector = WindowDetector(self.vad_opts.window_size_ms,
- self.vad_opts.sil_to_speech_time_thres,
- self.vad_opts.speech_to_sil_time_thres,
- self.vad_opts.frame_in_ms)
- windows_detector.Reset()
-
- stats = Stats(sil_pdf_ids=self.vad_opts.sil_pdf_ids,
- max_end_sil_frame_cnt_thresh=self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres,
- speech_noise_thres=self.vad_opts.speech_noise_thres
- )
- cache["windows_detector"] = windows_detector
- cache["stats"] = stats
- return cache
-
- def inference(self,
- data_in,
- data_lengths=None,
- key: list = None,
- tokenizer=None,
- frontend=None,
- cache: dict = {},
- **kwargs,
- ):
- if len(cache) == 0:
- self.init_cache(cache, **kwargs)
-
- meta_data = {}
- chunk_size = kwargs.get("chunk_size", 60000) # 50ms
- chunk_stride_samples = int(chunk_size * frontend.fs / 1000)
-
- time1 = time.perf_counter()
- cfg = {"is_final": kwargs.get("is_final", False)}
- audio_sample_list = load_audio_text_image_video(data_in,
- fs=frontend.fs,
- audio_fs=kwargs.get("fs", 16000),
- data_type=kwargs.get("data_type", "sound"),
- tokenizer=tokenizer,
- cache=cfg,
- )
- _is_final = cfg["is_final"] # if data_in is a file or url, set is_final=True
-
- time2 = time.perf_counter()
- meta_data["load_data"] = f"{time2 - time1:0.3f}"
- assert len(audio_sample_list) == 1, "batch_size must be set 1"
-
- audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0]))
-
- n = int(len(audio_sample) // chunk_stride_samples + int(_is_final))
- m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final)))
- segments = []
- for i in range(n):
- kwargs["is_final"] = _is_final and i == n - 1
- audio_sample_i = audio_sample[i * chunk_stride_samples:(i + 1) * chunk_stride_samples]
-
- # extract fbank feats
- speech, speech_lengths = extract_fbank([audio_sample_i], data_type=kwargs.get("data_type", "sound"),
- frontend=frontend, cache=cache["frontend"],
- is_final=kwargs["is_final"])
- time3 = time.perf_counter()
- meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
- meta_data["batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
- speech = speech.to(device=kwargs["device"])
- speech_lengths = speech_lengths.to(device=kwargs["device"])
-
- batch = {
- "feats": speech,
- "waveform": cache["frontend"]["waveforms"],
- "is_final": kwargs["is_final"],
- "cache": cache
- }
- segments_i = self.forward(**batch)
- if len(segments_i) > 0:
- segments.extend(*segments_i)
-
-
- cache["prev_samples"] = audio_sample[:-m]
- if _is_final:
- self.init_cache(cache)
-
- ibest_writer = None
- if ibest_writer is None and kwargs.get("output_dir") is not None:
- writer = DatadirWriter(kwargs.get("output_dir"))
- ibest_writer = writer[f"{1}best_recog"]
-
- results = []
- result_i = {"key": key[0], "value": segments}
- if "MODELSCOPE_ENVIRONMENT" in os.environ and os.environ["MODELSCOPE_ENVIRONMENT"] == "eas":
- result_i = json.dumps(result_i)
-
- results.append(result_i)
-
- if ibest_writer is not None:
- ibest_writer["text"][key[0]] = segments
-
-
- return results, meta_data
-
-
- def DetectCommonFrames(self, cache: dict = {}) -> int:
- if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
- return 0
- for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
- frame_state = FrameState.kFrameStateInvalid
- frame_state = self.GetFrameState(cache["stats"].frm_cnt - 1 - i - cache["stats"].last_drop_frames, cache=cache)
- self.DetectOneFrame(frame_state, cache["stats"].frm_cnt - 1 - i, False, cache=cache)
-
- return 0
-
- def DetectLastFrames(self, cache: dict = {}) -> int:
- if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
- return 0
- for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
- frame_state = FrameState.kFrameStateInvalid
- frame_state = self.GetFrameState(cache["stats"].frm_cnt - 1 - i - cache["stats"].last_drop_frames, cache=cache)
- if i != 0:
- self.DetectOneFrame(frame_state, cache["stats"].frm_cnt - 1 - i, False, cache=cache)
- else:
- self.DetectOneFrame(frame_state, cache["stats"].frm_cnt - 1, True, cache=cache)
-
- return 0
-
- def DetectOneFrame(self, cur_frm_state: FrameState, cur_frm_idx: int, is_final_frame: bool, cache: dict = {}) -> None:
- tmp_cur_frm_state = FrameState.kFrameStateInvalid
- if cur_frm_state == FrameState.kFrameStateSpeech:
- if math.fabs(1.0) > self.vad_opts.fe_prior_thres:
- tmp_cur_frm_state = FrameState.kFrameStateSpeech
- else:
- tmp_cur_frm_state = FrameState.kFrameStateSil
- elif cur_frm_state == FrameState.kFrameStateSil:
- tmp_cur_frm_state = FrameState.kFrameStateSil
- state_change = cache["windows_detector"].DetectOneFrame(tmp_cur_frm_state, cur_frm_idx, cache=cache)
- frm_shift_in_ms = self.vad_opts.frame_in_ms
- if AudioChangeState.kChangeStateSil2Speech == state_change:
- silence_frame_count = cache["stats"].continous_silence_frame_count
- cache["stats"].continous_silence_frame_count = 0
- cache["stats"].pre_end_silence_detected = False
- start_frame = 0
- if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
- start_frame = max(cache["stats"].data_buf_start_frame, cur_frm_idx - self.LatencyFrmNumAtStartPoint(cache=cache))
- self.OnVoiceStart(start_frame, cache=cache)
- cache["stats"].vad_state_machine = VadStateMachine.kVadInStateInSpeechSegment
- for t in range(start_frame + 1, cur_frm_idx + 1):
- self.OnVoiceDetected(t, cache=cache)
- elif cache["stats"].vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
- for t in range(cache["stats"].latest_confirmed_speech_frame + 1, cur_frm_idx):
- self.OnVoiceDetected(t, cache=cache)
- if cur_frm_idx - cache["stats"].confirmed_start_frame + 1 > \
- self.vad_opts.max_single_segment_time / frm_shift_in_ms:
- self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
- cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
- elif not is_final_frame:
- self.OnVoiceDetected(cur_frm_idx, cache=cache)
- else:
- self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx, cache=cache)
- else:
- pass
- elif AudioChangeState.kChangeStateSpeech2Sil == state_change:
- cache["stats"].continous_silence_frame_count = 0
- if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
- pass
- elif cache["stats"].vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
- if cur_frm_idx - cache["stats"].confirmed_start_frame + 1 > \
- self.vad_opts.max_single_segment_time / frm_shift_in_ms:
- self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
- cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
- elif not is_final_frame:
- self.OnVoiceDetected(cur_frm_idx, cache=cache)
- else:
- self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx, cache=cache)
- else:
- pass
- elif AudioChangeState.kChangeStateSpeech2Speech == state_change:
- cache["stats"].continous_silence_frame_count = 0
- if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
- if cur_frm_idx - cache["stats"].confirmed_start_frame + 1 > \
- self.vad_opts.max_single_segment_time / frm_shift_in_ms:
- cache["stats"].max_time_out = True
- self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
- cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
- elif not is_final_frame:
- self.OnVoiceDetected(cur_frm_idx, cache=cache)
- else:
- self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx, cache=cache)
- else:
- pass
- elif AudioChangeState.kChangeStateSil2Sil == state_change:
- cache["stats"].continous_silence_frame_count += 1
- if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
- # silence timeout, return zero length decision
- if ((self.vad_opts.detect_mode == VadDetectMode.kVadSingleUtteranceDetectMode.value) and (
- cache["stats"].continous_silence_frame_count * frm_shift_in_ms > self.vad_opts.max_start_silence_time)) \
- or (is_final_frame and cache["stats"].number_end_time_detected == 0):
- for t in range(cache["stats"].lastest_confirmed_silence_frame + 1, cur_frm_idx):
- self.OnSilenceDetected(t, cache=cache)
- self.OnVoiceStart(0, True, cache=cache)
- self.OnVoiceEnd(0, True, False, cache=cache)
- cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
- else:
- if cur_frm_idx >= self.LatencyFrmNumAtStartPoint(cache=cache):
- self.OnSilenceDetected(cur_frm_idx - self.LatencyFrmNumAtStartPoint(cache=cache), cache=cache)
- elif cache["stats"].vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
- if cache["stats"].continous_silence_frame_count * frm_shift_in_ms >= cache["stats"].max_end_sil_frame_cnt_thresh:
- lookback_frame = int(cache["stats"].max_end_sil_frame_cnt_thresh / frm_shift_in_ms)
- if self.vad_opts.do_extend:
- lookback_frame -= int(self.vad_opts.lookahead_time_end_point / frm_shift_in_ms)
- lookback_frame -= 1
- lookback_frame = max(0, lookback_frame)
- self.OnVoiceEnd(cur_frm_idx - lookback_frame, False, False, cache=cache)
- cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
- elif cur_frm_idx - cache["stats"].confirmed_start_frame + 1 > \
- self.vad_opts.max_single_segment_time / frm_shift_in_ms:
- self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
- cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
- elif self.vad_opts.do_extend and not is_final_frame:
- if cache["stats"].continous_silence_frame_count <= int(
- self.vad_opts.lookahead_time_end_point / frm_shift_in_ms):
- self.OnVoiceDetected(cur_frm_idx, cache=cache)
- else:
- self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx, cache=cache)
- else:
- pass
-
- if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateEndPointDetected and \
- self.vad_opts.detect_mode == VadDetectMode.kVadMutipleUtteranceDetectMode.value:
- self.ResetDetection(cache=cache)
|