| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- #!/usr/bin/env bash
- workspace=`pwd`
- # machines configuration
- CUDA_VISIBLE_DEVICES="0,1"
- gpu_num=2
- gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding
- # for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob
- njob=1
- # general configuration
- feats_dir="../DATA" #feature output dictionary
- exp_dir="."
- lang=zh
- token_type=char
- stage=0
- stop_stage=5
- # feature configuration
- nj=64
- # data
- raw_data=../raw_data
- data_url=www.openslr.org/resources/33
- # exp tag
- tag="exp1"
- . utils/parse_options.sh || exit 1;
- # Set bash to 'debug' mode, it will exit on :
- # -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
- set -e
- set -u
- set -o pipefail
- train_set=train
- valid_set=dev
- test_sets="dev test"
- asr_config=train_asr_paraformer_conformer_12e_6d_2048_256.yaml
- model_dir="baseline_$(basename "${asr_config}" .yaml)_${lang}_${token_type}_${tag}"
- #inference_config=conf/decode_asr_transformer_noctc_1best.yaml
- #inference_asr_model=valid.acc.ave_10best.pb
- ## you can set gpu num for decoding here
- #gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default
- #ngpu=$(echo $gpuid_list | awk -F "," '{print NF}')
- #
- #if ${gpu_inference}; then
- # inference_nj=$[${ngpu}*${njob}]
- # _ngpu=1
- #else
- # inference_nj=$njob
- # _ngpu=0
- #fi
- if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
- echo "stage -1: Data Download"
- local/download_and_untar.sh ${raw_data} ${data_url} data_aishell
- local/download_and_untar.sh ${raw_data} ${data_url} resource_aishell
- fi
- if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
- echo "stage 0: Data preparation"
- # Data preparation
- local/aishell_data_prep.sh ${raw_data}/data_aishell/wav ${raw_data}/data_aishell/transcript ${feats_dir}
- for x in train dev test; do
- cp ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org
- paste -d " " <(cut -f 1 -d" " ${feats_dir}/data/${x}/text.org) <(cut -f 2- -d" " ${feats_dir}/data/${x}/text.org | tr -d " ") \
- > ${feats_dir}/data/${x}/text
- utils/text2token.py -n 1 -s 1 ${feats_dir}/data/${x}/text > ${feats_dir}/data/${x}/text.org
- mv ${feats_dir}/data/${x}/text.org ${feats_dir}/data/${x}/text
- # convert wav.scp text to jsonl
- scp_file_list_arg="++scp_file_list='[\"${feats_dir}/data/${x}/wav.scp\",\"${feats_dir}/data/${x}/text\"]'"
- python ../../../funasr/datasets/audio_datasets/scp2jsonl.py \
- ++data_type_list='["source", "target"]' \
- ++jsonl_file_out=${feats_dir}/data/${x}/audio_datasets.jsonl \
- ${scp_file_list_arg}
- done
- fi
- if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
- echo "stage 1: Feature and CMVN Generation"
- # utils/compute_cmvn.sh --fbankdir ${feats_dir}/data/${train_set} --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --config_file "$asr_config" --scale 1.0
- python ../../../funasr/bin/compute_audio_cmvn.py \
- --config-path "${workspace}" \
- --config-name "${asr_config}" \
- ++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
- ++cmvn_file="${feats_dir}/data/${train_set}/cmvn.json" \
- ++dataset_conf.num_workers=$nj
- fi
- token_list=${feats_dir}/data/${lang}_token_list/$token_type/tokens.txt
- echo "dictionary: ${token_list}"
- if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
- echo "stage 2: Dictionary Preparation"
- mkdir -p ${feats_dir}/data/${lang}_token_list/$token_type/
-
- echo "make a dictionary"
- echo "<blank>" > ${token_list}
- echo "<s>" >> ${token_list}
- echo "</s>" >> ${token_list}
- utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/$train_set/text | cut -f 2- -d" " | tr " " "\n" \
- | sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
- echo "<unk>" >> ${token_list}
- fi
- # LM Training Stage
- if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
- echo "stage 3: LM Training"
- fi
- # ASR Training Stage
- if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
- echo "stage 4: ASR Training"
- torchrun \
- --nnodes 1 \
- --nproc_per_node ${gpu_num} \
- ../../../funasr/bin/train.py \
- --config-path "${workspace}" \
- --config-name "${asr_config}" \
- ++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
- ++cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
- ++token_list="${token_list}" \
- ++output_dir="${exp_dir}/exp/${model_dir}"
- fi
- #
- ## Testing Stage
- #if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
- # echo "stage 5: Inference"
- # for dset in ${test_sets}; do
- # asr_exp=${exp_dir}/exp/${model_dir}
- # inference_tag="$(basename "${inference_config}" .yaml)"
- # _dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}"
- # _logdir="${_dir}/logdir"
- # if [ -d ${_dir} ]; then
- # echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
- # exit 0
- # fi
- # mkdir -p "${_logdir}"
- # _data="${feats_dir}/data/${dset}"
- # key_file=${_data}/${scp}
- # num_scp_file="$(<${key_file} wc -l)"
- # _nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
- # split_scps=
- # for n in $(seq "${_nj}"); do
- # split_scps+=" ${_logdir}/keys.${n}.scp"
- # done
- # # shellcheck disable=SC2086
- # utils/split_scp.pl "${key_file}" ${split_scps}
- # _opts=
- # if [ -n "${inference_config}" ]; then
- # _opts+="--config ${inference_config} "
- # fi
- # ${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
- # python -m funasr.bin.asr_inference_launch \
- # --batch_size 1 \
- # --ngpu "${_ngpu}" \
- # --njob ${njob} \
- # --gpuid_list ${gpuid_list} \
- # --data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
- # --cmvn_file ${feats_dir}/data/${train_set}/cmvn/am.mvn \
- # --key_file "${_logdir}"/keys.JOB.scp \
- # --asr_train_config "${asr_exp}"/config.yaml \
- # --asr_model_file "${asr_exp}"/"${inference_asr_model}" \
- # --output_dir "${_logdir}"/output.JOB \
- # --mode paraformer \
- # ${_opts}
- #
- # for f in token token_int score text; do
- # if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
- # for i in $(seq "${_nj}"); do
- # cat "${_logdir}/output.${i}/1best_recog/${f}"
- # done | sort -k1 >"${_dir}/${f}"
- # fi
- # done
- # python utils/proce_text.py ${_dir}/text ${_dir}/text.proc
- # python utils/proce_text.py ${_data}/text ${_data}/text.proc
- # python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer
- # tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt
- # cat ${_dir}/text.cer.txt
- # done
- #fi
- #
- ## Prepare files for ModelScope fine-tuning and inference
- #if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
- # echo "stage 6: ModelScope Preparation"
- # cp ${feats_dir}/data/${train_set}/cmvn/am.mvn ${exp_dir}/exp/${model_dir}/am.mvn
- # vocab_size=$(cat ${token_list} | wc -l)
- # python utils/gen_modelscope_configuration.py \
- # --am_model_name $inference_asr_model \
- # --mode paraformer \
- # --model_name paraformer \
- # --dataset aishell \
- # --output_dir $exp_dir/exp/$model_dir \
- # --vocab_size $vocab_size \
- # --nat _nat \
- # --tag $tag
- #fi
|