|
|
преди 2 години | |
|---|---|---|
| .. | ||
| README.md | преди 2 години | |
| demo.py | преди 2 години | |
| finetune.py | преди 2 години | |
| infer.py | преди 2 години | |
| infer.sh | преди 2 години | |
| utils | преди 2 години | |
Modify finetune training related parameters in finetune.py
train/wav.scp, train/text; validation/wav.scp, validation/textlarge, otherwise set as smallsmall, batch_bins indicates the feature frames. For dataset_type is large, batch_bins indicates the duration in msThen you can run the pipeline to finetune with:
python finetune.py
Or you can use the finetuned model for inference directly.
Setting parameters in infer.py
test/wav.scp. If test/text is also exists, CER will be computedThen you can run the pipeline to infer with:
python infer.py
Results
The decoding results can be found in $output_dir/1best_recog/text.cer, which includes recognition results of each sample and the CER metric of the whole test set.
Modify inference related parameters in infer_after_finetune.py
test/wav.scp. If test/text is also exists, CER will be computedvalid.cer_ctc.ave.pbThen you can run the pipeline to finetune with:
python infer_after_finetune.py
Results
The decoding results can be found in $output_dir/decoding_results/text.cer, which includes recognition results of each sample and the CER metric of the whole test set.