| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- #!/usr/bin/env bash
- set -e
- set -u
- set -o pipefail
- stage=1
- stop_stage=2
- model="damo/speech_UniASR_asr_2pass-minnan-16k-common-vocab3825"
- data_dir="./data/test"
- output_dir="./results"
- batch_size=1
- gpu_inference=true # whether to perform gpu decoding
- gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
- njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
- checkpoint_dir=
- checkpoint_name="valid.cer_ctc.ave.pb"
- decoding_mode="normal"
- . utils/parse_options.sh || exit 1;
- if ${gpu_inference} == "true"; then
- nj=$(echo $gpuid_list | awk -F "," '{print NF}')
- else
- nj=$njob
- batch_size=1
- gpuid_list=""
- for JOB in $(seq ${nj}); do
- gpuid_list=$gpuid_list"-1,"
- done
- fi
- mkdir -p $output_dir/split
- split_scps=""
- for JOB in $(seq ${nj}); do
- split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
- done
- perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
- if [ -n "${checkpoint_dir}" ]; then
- python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
- model=${checkpoint_dir}/${model}
- fi
- if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
- echo "Decoding ..."
- gpuid_list_array=(${gpuid_list//,/ })
- for JOB in $(seq ${nj}); do
- {
- id=$((JOB-1))
- gpuid=${gpuid_list_array[$id]}
- mkdir -p ${output_dir}/output.$JOB
- python infer.py \
- --model ${model} \
- --audio_in ${output_dir}/split/wav.$JOB.scp \
- --output_dir ${output_dir}/output.$JOB \
- --batch_size ${batch_size} \
- --gpuid ${gpuid} \
- --decoding_mode ${decoding_mode}
- }&
- done
- wait
- mkdir -p ${output_dir}/1best_recog
- for f in token score text; do
- if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
- for i in $(seq "${nj}"); do
- cat "${output_dir}/output.${i}/1best_recog/${f}"
- done | sort -k1 >"${output_dir}/1best_recog/${f}"
- fi
- done
- fi
- if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
- echo "Computing WER ..."
- cp ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc
- cp ${data_dir}/text ${output_dir}/1best_recog/text.ref
- python utils/compute_wer.py ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer
- tail -n 3 ${output_dir}/1best_recog/text.cer
- fi
- if [ $stage -le 3 ] && [ $stop_stage -ge 3 ];then
- echo "SpeechIO TIOBE textnorm"
- echo "$0 --> Normalizing REF text ..."
- ./utils/textnorm_zh.py \
- --has_key --to_upper \
- ${data_dir}/text \
- ${output_dir}/1best_recog/ref.txt
- echo "$0 --> Normalizing HYP text ..."
- ./utils/textnorm_zh.py \
- --has_key --to_upper \
- ${output_dir}/1best_recog/text.proc \
- ${output_dir}/1best_recog/rec.txt
- grep -v $'\t$' ${output_dir}/1best_recog/rec.txt > ${output_dir}/1best_recog/rec_non_empty.txt
- echo "$0 --> computing WER/CER and alignment ..."
- ./utils/error_rate_zh \
- --tokenizer char \
- --ref ${output_dir}/1best_recog/ref.txt \
- --hyp ${output_dir}/1best_recog/rec_non_empty.txt \
- ${output_dir}/1best_recog/DETAILS.txt | tee ${output_dir}/1best_recog/RESULTS.txt
- rm -rf ${output_dir}/1best_recog/rec.txt ${output_dir}/1best_recog/rec_non_empty.txt
- fi
|