infer.sh 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105
  1. #!/usr/bin/env bash
  2. set -e
  3. set -u
  4. set -o pipefail
  5. stage=1
  6. stop_stage=2
  7. model="damo/speech_UniASR_asr_2pass-minnan-16k-common-vocab3825"
  8. data_dir="./data/test"
  9. output_dir="./results"
  10. batch_size=1
  11. gpu_inference=true # whether to perform gpu decoding
  12. gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
  13. njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
  14. checkpoint_dir=
  15. checkpoint_name="valid.cer_ctc.ave.pb"
  16. decoding_mode="normal"
  17. . utils/parse_options.sh || exit 1;
  18. if ${gpu_inference} == "true"; then
  19. nj=$(echo $gpuid_list | awk -F "," '{print NF}')
  20. else
  21. nj=$njob
  22. batch_size=1
  23. gpuid_list=""
  24. for JOB in $(seq ${nj}); do
  25. gpuid_list=$gpuid_list"-1,"
  26. done
  27. fi
  28. mkdir -p $output_dir/split
  29. split_scps=""
  30. for JOB in $(seq ${nj}); do
  31. split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
  32. done
  33. perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
  34. if [ -n "${checkpoint_dir}" ]; then
  35. python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
  36. model=${checkpoint_dir}/${model}
  37. fi
  38. if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
  39. echo "Decoding ..."
  40. gpuid_list_array=(${gpuid_list//,/ })
  41. for JOB in $(seq ${nj}); do
  42. {
  43. id=$((JOB-1))
  44. gpuid=${gpuid_list_array[$id]}
  45. mkdir -p ${output_dir}/output.$JOB
  46. python infer.py \
  47. --model ${model} \
  48. --audio_in ${output_dir}/split/wav.$JOB.scp \
  49. --output_dir ${output_dir}/output.$JOB \
  50. --batch_size ${batch_size} \
  51. --gpuid ${gpuid} \
  52. --decoding_mode ${decoding_mode}
  53. }&
  54. done
  55. wait
  56. mkdir -p ${output_dir}/1best_recog
  57. for f in token score text; do
  58. if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
  59. for i in $(seq "${nj}"); do
  60. cat "${output_dir}/output.${i}/1best_recog/${f}"
  61. done | sort -k1 >"${output_dir}/1best_recog/${f}"
  62. fi
  63. done
  64. fi
  65. if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
  66. echo "Computing WER ..."
  67. cp ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc
  68. cp ${data_dir}/text ${output_dir}/1best_recog/text.ref
  69. python utils/compute_wer.py ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer
  70. tail -n 3 ${output_dir}/1best_recog/text.cer
  71. fi
  72. if [ $stage -le 3 ] && [ $stop_stage -ge 3 ];then
  73. echo "SpeechIO TIOBE textnorm"
  74. echo "$0 --> Normalizing REF text ..."
  75. ./utils/textnorm_zh.py \
  76. --has_key --to_upper \
  77. ${data_dir}/text \
  78. ${output_dir}/1best_recog/ref.txt
  79. echo "$0 --> Normalizing HYP text ..."
  80. ./utils/textnorm_zh.py \
  81. --has_key --to_upper \
  82. ${output_dir}/1best_recog/text.proc \
  83. ${output_dir}/1best_recog/rec.txt
  84. grep -v $'\t$' ${output_dir}/1best_recog/rec.txt > ${output_dir}/1best_recog/rec_non_empty.txt
  85. echo "$0 --> computing WER/CER and alignment ..."
  86. ./utils/error_rate_zh \
  87. --tokenizer char \
  88. --ref ${output_dir}/1best_recog/ref.txt \
  89. --hyp ${output_dir}/1best_recog/rec_non_empty.txt \
  90. ${output_dir}/1best_recog/DETAILS.txt | tee ${output_dir}/1best_recog/RESULTS.txt
  91. rm -rf ${output_dir}/1best_recog/rec.txt ${output_dir}/1best_recog/rec_non_empty.txt
  92. fi