|
|
@@ -1,5 +1,7 @@
|
|
|
import torch
|
|
|
import numpy as np
|
|
|
+import logging
|
|
|
+import torch.distributed as dist
|
|
|
|
|
|
from funasr.register import tables
|
|
|
|
|
|
@@ -82,3 +84,194 @@ class BatchSampler(torch.utils.data.BatchSampler):
|
|
|
max_token = sample_len_cur_raw
|
|
|
num_sample = 1
|
|
|
|
|
|
+
|
|
|
+@tables.register("batch_sampler_classes", "BatchSampler")
|
|
|
+@tables.register("batch_sampler_classes", "RankFullLocalShuffleBatchSampler")
|
|
|
+class RankFullLocalShuffleBatchSampler(torch.utils.data.BatchSampler):
|
|
|
+
|
|
|
+ def __init__(self, dataset,
|
|
|
+ batch_type: str = "example",
|
|
|
+ batch_size: int = 100,
|
|
|
+ buffer_size: int = 30,
|
|
|
+ drop_last: bool = True,
|
|
|
+ shuffle: bool = True,
|
|
|
+ is_training: bool = True,
|
|
|
+ **kwargs):
|
|
|
+
|
|
|
+ self.drop_last = drop_last
|
|
|
+ self.pre_idx = -1
|
|
|
+ self.dataset = dataset
|
|
|
+ self.total_samples = len(dataset)
|
|
|
+ self.batch_type = batch_type
|
|
|
+ self.batch_size = int(batch_size)
|
|
|
+ self.buffer_size = buffer_size
|
|
|
+ self.max_token_length = kwargs.get("max_token_length", 1500)
|
|
|
+ self.shuffle_idx = np.arange(self.total_samples)
|
|
|
+ self.shuffle = shuffle and is_training
|
|
|
+ self.length_scale_source = kwargs.get("length_scale_source", 1.0)
|
|
|
+
|
|
|
+ try:
|
|
|
+ rank = dist.get_rank()
|
|
|
+ world_size = dist.get_world_size()
|
|
|
+ except:
|
|
|
+ rank = 0
|
|
|
+ world_size = 1
|
|
|
+ self.rank = rank
|
|
|
+ self.world_size = world_size
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return (self.total_samples - 1) // (self.batch_size * self.world_size) + 1
|
|
|
+
|
|
|
+ def set_epoch(self, epoch):
|
|
|
+ np.random.seed(epoch)
|
|
|
+
|
|
|
+ def __iter__(self):
|
|
|
+
|
|
|
+ batch_size_total = self.batch_size * self.world_size
|
|
|
+
|
|
|
+ if self.shuffle:
|
|
|
+ np.random.shuffle(self.shuffle_idx)
|
|
|
+
|
|
|
+ batch = []
|
|
|
+ max_token = 0
|
|
|
+ num_sample = 0
|
|
|
+
|
|
|
+ iter_num = (self.total_samples - 1) // self.buffer_size + 1
|
|
|
+ # print("iter_num: ", iter_num)
|
|
|
+ for iter in range(self.pre_idx + 1, iter_num):
|
|
|
+ # if iter == iter_num -1 and self.drop_last:
|
|
|
+ # continue
|
|
|
+ datalen_with_index = []
|
|
|
+ for i in range(self.buffer_size):
|
|
|
+ idx = iter * self.buffer_size + i
|
|
|
+ if idx >= self.total_samples:
|
|
|
+ continue
|
|
|
+
|
|
|
+ idx_map = self.shuffle_idx[idx]
|
|
|
+ # prompt = self.dataset.indexed_dataset[idx_map]["prompt"]
|
|
|
+
|
|
|
+ source_len = self.dataset.get_source_len(idx_map) / self.length_scale_source
|
|
|
+ target_len = self.dataset.get_target_len(idx_map) if self.batch_type == 'length' else 0.0
|
|
|
+ sample_len_cur = source_len + target_len
|
|
|
+
|
|
|
+ datalen_with_index.append([idx, sample_len_cur])
|
|
|
+
|
|
|
+ datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1])
|
|
|
+ for item in datalen_with_index_sort:
|
|
|
+ idx, sample_len_cur_raw = item
|
|
|
+ if sample_len_cur_raw > self.max_token_length:
|
|
|
+ continue
|
|
|
+
|
|
|
+ max_token_cur = max(max_token, sample_len_cur_raw)
|
|
|
+ max_token_padding = 1 + num_sample
|
|
|
+ # if self.batch_type != 'example':
|
|
|
+ # max_token_padding *= max_token_cur
|
|
|
+ if max_token_padding <= batch_size_total:
|
|
|
+ batch.append(idx)
|
|
|
+ max_token = max_token_cur
|
|
|
+ num_sample += 1
|
|
|
+ else:
|
|
|
+ batch_rank = batch[self.rank*self.batch_size: (self.rank+1)*self.batch_size]
|
|
|
+ yield batch_rank
|
|
|
+ batch = [idx]
|
|
|
+ max_token = sample_len_cur_raw
|
|
|
+ num_sample = 1
|
|
|
+
|
|
|
+
|
|
|
+@tables.register("batch_sampler_classes", "RankFullLocalShuffleDynamicBatchSampler")
|
|
|
+class RankFullLocalShuffleDynamicBatchSampler(torch.utils.data.BatchSampler):
|
|
|
+
|
|
|
+ def __init__(self, dataset,
|
|
|
+ batch_type: str = "example",
|
|
|
+ batch_size: int = 100,
|
|
|
+ buffer_size: int = 30,
|
|
|
+ drop_last: bool = True,
|
|
|
+ shuffle: bool = True,
|
|
|
+ is_training: bool = True,
|
|
|
+ **kwargs):
|
|
|
+
|
|
|
+ self.drop_last = drop_last
|
|
|
+ self.pre_idx = -1
|
|
|
+ self.dataset = dataset
|
|
|
+ self.total_samples = len(dataset)
|
|
|
+ self.batch_type = batch_type
|
|
|
+ self.batch_size = int(batch_size)
|
|
|
+ self.buffer_size = buffer_size
|
|
|
+ self.max_token_length = kwargs.get("max_token_length", 1500)
|
|
|
+ self.shuffle_idx = np.arange(self.total_samples)
|
|
|
+ self.shuffle = shuffle and is_training
|
|
|
+ self.length_scale_source = kwargs.get("length_scale_source", 1.0)
|
|
|
+
|
|
|
+ try:
|
|
|
+ rank = dist.get_rank()
|
|
|
+ world_size = dist.get_world_size()
|
|
|
+ except:
|
|
|
+ rank = 0
|
|
|
+ world_size = 1
|
|
|
+ self.rank = rank
|
|
|
+ self.world_size = world_size
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return (self.total_samples - 1) // (self.batch_size * self.world_size) + 1
|
|
|
+
|
|
|
+ def set_epoch(self, epoch):
|
|
|
+ np.random.seed(epoch)
|
|
|
+
|
|
|
+ def __iter__(self):
|
|
|
+
|
|
|
+ batch_size_total = self.batch_size * self.world_size
|
|
|
+ if self.shuffle:
|
|
|
+ np.random.shuffle(self.shuffle_idx)
|
|
|
+
|
|
|
+ batch_list_all_rank = []
|
|
|
+ batch_list_cur = []
|
|
|
+ max_token = 0
|
|
|
+ num_sample = 0
|
|
|
+
|
|
|
+ iter_num = (self.total_samples - 1) // self.buffer_size + 1
|
|
|
+ # print("iter_num: ", iter_num)
|
|
|
+ for iter in range(self.pre_idx + 1, iter_num):
|
|
|
+ # if iter == iter_num - 1 and self.drop_last:
|
|
|
+ # continue
|
|
|
+ datalen_with_index = []
|
|
|
+ for i in range(self.buffer_size):
|
|
|
+ idx = iter * self.buffer_size + i
|
|
|
+ if idx >= self.total_samples:
|
|
|
+ continue
|
|
|
+
|
|
|
+ idx_map = self.shuffle_idx[idx]
|
|
|
+ # prompt = self.dataset.indexed_dataset[idx_map]["prompt"]
|
|
|
+
|
|
|
+ source_len = self.dataset.get_source_len(idx_map) / self.length_scale_source
|
|
|
+ target_len = self.dataset.get_target_len(idx_map) if self.batch_type == 'length' else 0.0
|
|
|
+ sample_len_cur = source_len + target_len
|
|
|
+
|
|
|
+ datalen_with_index.append([idx, sample_len_cur])
|
|
|
+
|
|
|
+ datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1])
|
|
|
+ for ii, item in enumerate(datalen_with_index_sort):
|
|
|
+ is_last_batch = iter == iter_num - 1 and ii == len(datalen_with_index_sort)
|
|
|
+ idx, sample_len_cur_raw = item
|
|
|
+ if sample_len_cur_raw > self.max_token_length:
|
|
|
+ continue
|
|
|
+
|
|
|
+ max_token_cur = max(max_token, sample_len_cur_raw)
|
|
|
+ max_token_padding = 1 + num_sample
|
|
|
+
|
|
|
+ if self.batch_type != 'example':
|
|
|
+ max_token_padding *= max_token_cur
|
|
|
+ if len(batch_list_all_rank) < self.world_size:
|
|
|
+
|
|
|
+ if max_token_padding <= self.batch_size:
|
|
|
+ batch_list_cur.append(idx)
|
|
|
+ max_token = max_token_cur
|
|
|
+ num_sample += 1
|
|
|
+ else:
|
|
|
+ batch_list_all_rank.append(batch_list_cur)
|
|
|
+ batch_list_cur = []
|
|
|
+ else:
|
|
|
+ batch_rank = batch_list_all_rank[self.rank]
|
|
|
+ yield batch_rank
|
|
|
+ batch_list_all_rank = [idx]
|
|
|
+ max_token = sample_len_cur_raw
|
|
|
+ num_sample = 1
|